

**DEPARTMENT OF CHEMISTRY**  
**LESSON PLAN**

Faculty Name: **Barsha Rani Bora**

Course Name: B. Sc. Honours and Regular (CBCS)

Session: 2022-2023 (August–December)

**B. Sc. 1st Semester (CBCS): CHE-HC-1026**  
**(PHYSICAL CHEMISTRY I)**

| Months    | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Week                                                                     | Days | Class Test/Assignment |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|-----------------------|
| September | <b>Molecular and Crystal Symmetry:</b><br>1. Elementary ideas of symmetry, symmetry elements and symmetry operations.<br>2. qualitative idea of point and space groups.<br>3. seven crystal systems and fourteen Bravais lattices.                                                                                                                                                                                                                                                                                  | 3 <sup>rd</sup> – 4 <sup>th</sup> week                                   | 6    | Nil                   |
|           | <b>Practical:</b><br>1. Surface tension measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 <sup>rd</sup> – 4 <sup>th</sup> week                                   | 2    | Nil                   |
| October   | <b>Liquid State:</b><br>1. Qualitative treatment of the structure of the liquid state; Radial distribution function<br>2. physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination.<br>3. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases.<br>4. Qualitative discussion of structure of water. | 1 <sup>st</sup> – 4 <sup>th</sup> week<br>(Durga Puja vacation included) | 15   | Assignment            |
|           | <b>Practical:</b><br>1. Viscosity measurement using Ostwald's viscometer                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <sup>st</sup> – 4 <sup>th</sup> week                                   | 2    | Nil                   |
| November  | <b>Solid State:</b><br>1. Nature of the solid state, law of constancy of interfacial angles.<br>2. law of rational indices, Miller indices<br>3. X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method.                                                                                                                                                                                                                                                             | 1 <sup>st</sup> – 2 <sup>nd</sup> week                                   | 8    | Class test            |
|           | <b>Solid State, Oxidation – reduction:</b><br>1. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Liquid crystals.                                                                                                                                                                                                                                                                                                                                                               | 3 <sup>rd</sup> – 4 <sup>th</sup> week                                   | 10   |                       |

|          |                                                                                                                                                                                   |                                        |   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|--|
|          | 2. Redox equations, Standard Electrode Potential and its application to inorganic reactions.<br>3. Practice of previous years question paper.<br><b>Practical:</b><br>1. pH metry |                                        |   |  |
| December | End semester examination                                                                                                                                                          | 1 <sup>st</sup> – 4 <sup>th</sup> week | 4 |  |
|          |                                                                                                                                                                                   |                                        |   |  |

**B. Sc. 1st Semester (CBCS): CHE-RC/HG-1016**  
**(CHEMISTRY 1)**

| Months    | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Week                                                                     | Days | Class Test/Assignment |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|-----------------------|
| September | <b>Atomic Structure:</b><br>1. Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 <sup>rd</sup> – 4 <sup>th</sup> week                                   | 4    | Nil                   |
| October   | <b>Atomic Structure:</b><br>1. de-Broglie's relation, Heisenberg Uncertainty principle<br>2. Hydrogen atom spectra. Need of a new approach to Atomic structure.                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>st</sup> - 3 <sup>rd</sup> week<br>(Durga Puja vacation included) | 6    | Assignment            |
|           | <b>Atomic Structure:</b><br>1. What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of $\psi$ and $\psi^2$ , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydgenic wavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation).                                                                                                                                                                           | 4 <sup>th</sup> week                                                     | 4    | Nil                   |
|           | <b>Practical:</b><br>1. Estimation of oxalic acid by titrating it with KMnO <sub>4</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 <sup>st</sup> – 4 <sup>th</sup> week                                   | 2    | Nil                   |
| November  | <b>Atomic Structure:</b><br>1. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).<br>2. Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of | 1 <sup>st</sup> – 2 <sup>nd</sup> week                                   | 8    | Class test            |

|          |                                                                                             |  |  |  |
|----------|---------------------------------------------------------------------------------------------|--|--|--|
|          | exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations. |  |  |  |
|          | <b>Practical:</b><br>1. Estimation of oxalic acid by titrating it with KMnO <sub>4</sub> .  |  |  |  |
| December | End semester examination                                                                    |  |  |  |

\*\*\*\*\*

**DEPARTMENT OF CHEMISTRY**  
**LESSON PLAN**

Faculty Name: **Barsha Rani Bora**

Course Name: B. Sc. Honours and Regular courses (CBCS)

Session: 2022-2023 (January-June)

**B. Sc 2nd Semester (CBCS): CHE-HC-2026**  
**(PHYSICAL CHEMISTRY II)**

| Months   | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Week                                   | Days | Class Test/Assignment |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-----------------------|
| January  | <b>Chemical Thermodynamics:</b><br>1 Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.<br>2. First law: Concept of heat, $q$ , work, $w$ , internal energy, $U$ , and statement of first law; enthalpy, $H$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 <sup>rd</sup> – 4 <sup>th</sup> week | 8    | Nil                   |
|          | <b>Practical:</b><br>1. Checking the calibration of the thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                   |
| February | <b>Chemical Thermodynamics:</b><br>1. relation between heat capacities, calculations of $q$ , $w$ , $U$ and $H$ for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions. Law of equipartition of energy, degrees of freedom and molecular basis of heat capacities.<br>2. Thermochemistry: Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions. Adiabatic flame temperature, explosion temperature. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 10   | Class test            |
|          | <b>Practical:</b><br>1. Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                   |
| March    | <b>Chemical Thermodynamics</b><br>1. Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>st</sup> – 2 <sup>nd</sup> week | 6    | Assignment            |

|       |                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |    |            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|------------|
|       | <b>Chemical Thermodynamics</b><br>1. Calculation of entropy change for reversible and irreversible processes.<br>2. Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules.                                                                                                                                                                         | 3 <sup>rd</sup> - 4 <sup>th</sup> week | 6  |            |
|       | <b>Practical</b><br>1. Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system                                                                                                                                                                                                                                                              | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2  | Nil        |
| April | <b>Chemical Thermodynamics</b><br>1. Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; spontaneous process-enthalpy change, entropy change and free energy change considerations. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state. | 1 <sup>st</sup> - 4 <sup>th</sup> week | 10 | Class test |
|       | <b>Practical:</b><br>1. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                      | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2  |            |
| May   | <b>Systems of Variable Composition:</b><br>1. Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.                                                                                                                                                    | 1 <sup>st</sup> - 4 <sup>th</sup> week | 12 | Class test |
|       | <b>Practical:</b><br>1. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                      | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2  |            |
| June  | End semester examination                                                                                                                                                                                                                                                                                                                                                                                  |                                        |    |            |

**B. Sc 2nd Semester (CBCS): CHE-RC/HG-2016**  
**(CHEMISTRY 2)**

| Months   | Unit/Topic                                                                                                                                                                                                                             | Week                                   | Days | Class Test/Assignment |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-----------------------|
| January  | <b>Liquids</b><br>1. Surface tension and its determination using stalagmometer.                                                                                                                                                        | 3 <sup>rd</sup> – 4 <sup>th</sup> week | 2    | Nil                   |
|          | Practical:<br>1. Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.                                                                                                                          | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                   |
| February | <b>Liquids</b><br>1. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer.<br>2. Effect of temperature on surface tension and coefficient of viscosity of a liquid                             | 1 <sup>st</sup> – 4 <sup>th</sup> week | 3    | Class test            |
|          | Practical:<br>1. Study of the variation of surface tension of a detergent solution with concentration                                                                                                                                  | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2    |                       |
| March    | <b>Solids</b><br>1. Forms of solids. Symmetry elements, unit cells, crystal systems,                                                                                                                                                   | 1 <sup>st</sup> -4 <sup>th</sup> week  | 3    |                       |
|          | Practical:<br>1. Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald's viscometer.                                                                                                    | 3 <sup>rd</sup> week                   |      |                       |
| April    | <b>Solids</b><br>1. Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X-Ray diffraction by crystals, Bragg's law. | 1 <sup>st</sup> -4 <sup>th</sup> week  | 4    | Assignment            |
|          | Practical:<br>1. Study of the variation of viscosity of an aqueous solution with concentration of solute                                                                                                                               | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2    |                       |
| May      | <b>Solids</b><br>1. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals.                                                                                                   |                                        | 2    |                       |
| June     | End semester examination                                                                                                                                                                                                               |                                        |      |                       |

\*\*\*\*\*

**DEPARTMENT OF CHEMISTRY**  
**LESSON PLAN**

Faculty Name: **Barsha Rani Bora**

Course Name: B. Sc. Honours and Regular (CBCS) & Major/Minor (FYUGP)

Session: 2023-2024 (August–December)

**B. Sc. 1st Semester (FYUGP): Chemistry 1**

| Months    | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                  | Week                                   | Days | Class Test/<br>Assignment |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------------------|
| August    | <b>Atomic structure:</b><br>1. Historical development on structure of atom; Bohr's model, H atom Spectrum; Black Body Radiation; Photoelectric effect (qualitative treatment only); The dual behaviour and uncertainty principle<br>2. Quantum mechanical approach to atomic structure: Concept of Wave function, well behaved function, operator, Normalised and Orthogonal wave function                  | 1 <sup>st</sup> – 4 <sup>th</sup> week | 8    | Nil                       |
|           | <b>Practical:</b><br>1. Introduction to laboratory apparatus and safety measures.<br>2. Calibration of apparatus                                                                                                                                                                                                                                                                                            | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                       |
| September | <b>Atomic structure:</b><br>1. Schrodinger Wave equation, eigenfunction, Significance of $\Psi$ and $\Psi^2$ , Particle in a 1D box; Schrodinger equation of hydrogen atom (no derivation), radial and angular wave functions for hydrogen atom, probability distribution,<br>2. Quantum numbers, Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6    | Class test                |
|           | <b>Practical:</b><br>1. Determine the surface tension of a given liquid at room temp using stalagmometer by drop number method.                                                                                                                                                                                                                                                                             | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                       |
| October   | <b>Liquid state</b><br>1. Qualitative treatment of the structure of the liquid state. Physical properties of liquids, vapour pressure, surface tension coefficient of viscosity, and their determination. Temperature variation of viscosity of liquids and comparison with that of gases.                                                                                                                  | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6    | Assignment                |
|           | <b>Practical:</b>                                                                                                                                                                                                                                                                                                                                                                                           | 1 <sup>st</sup> – 4 <sup>th</sup> week | 4    |                           |

|          |                                                                                                                                                                                                                                        |                                        |   |            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|------------|
|          | 1. Determine the surface tension of a given liquid at room temp using stalagmometer by drop number method.                                                                                                                             |                                        |   |            |
| November | <b>Liquid state</b><br>1. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents (micelle formation and critical micelle concentration).<br>2. Revision of the syllabus | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6 | Class test |
|          | <b>Practical:</b><br>1. Determine the surface tension of a given liquid by means of stalagmometer using drop weight method.                                                                                                            | 1 <sup>st</sup> – 4 <sup>th</sup> week | 4 |            |
| December | End semester examination                                                                                                                                                                                                               |                                        |   |            |

**B. Sc. 3rd Semester (CBCS): CHE-HC-3036**  
**(PHYSICAL CHEMISTRY-III)**

| Months    | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Week                                   | Days | Class Test/<br>Assignment |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------------------|
| August    | <b>Phase Equilibria:</b><br>1. Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solid-liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications.<br>2. Phase diagrams for systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points, solid solutions. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 16   | Nil                       |
|           | Practical:<br>1. Study the kinetics of the following reaction<br>.<br>Acid hydrolysis of methyl acetate with hydrochloric acid.                                                                                                                                                                                                                                                                                                                                               | 1 <sup>st</sup> – 4 <sup>th</sup> week | 2    | Nil                       |
| September | <b>Phase Equilibria:</b><br>1. Binary solutions: Gibbs-Duhem-Margules equation n, its derivation and applications to fractional distillation of binary miscible liquids (ideal and nonideal), azeotropes, lever rule, partial                                                                                                                                                                                                                                                 | 1 <sup>st</sup> – 2 <sup>nd</sup> week | 8    | Class test                |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |    |            |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|------------|
|         | miscibility of liquids, CST, miscible pairs, steam distillation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |    |            |
|         | <b>Phase Equilibria, Chemical Kinetics:</b><br>1. Nernst distribution law: its derivation and applications.<br>2. Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws.<br>3. kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate equations (iv) chain reactions. | 3 <sup>rd</sup> - 4 <sup>th</sup> week | 10 | Assignment |
|         | Practical:<br>1. Study the kinetics of the following reaction.<br>Acid hydrolysis of methyl acetate with hydrochloric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2  |            |
| October | <b>Chemical Kinetics:</b><br>1. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates. Reaction mechanism- steady-state approximation and rate determining step approximation methods.                                                                                                                                                                                                                                                    | 1 <sup>st</sup> week                   | 5  |            |
|         | <b>Catalysis:</b><br>1. Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis. Reaction.                                                                                                                                                                                                                                                                                                              | 2 <sup>nd</sup> -4 <sup>th</sup> week  | 6  |            |
|         | Practical:<br>1. Study the kinetics of the following reaction.<br>Saponification of ethyl acetate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2  |            |

|          |                                                                                                                     |                                       |    |            |
|----------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|------------|
| November | <b>Surface Chemistry:</b><br>1. Physical adsorption, chemisorption, adsorption isotherms, nature of adsorbed state. | 1 <sup>st</sup> week                  | 2  | Class test |
|          | 1. Revision of previous classes                                                                                     | 2 <sup>nd</sup> -4 <sup>th</sup> week | 12 |            |
| December | End semester examination                                                                                            |                                       |    |            |

**B. Sc. 3rd Semester (CBCS): CHE-RC/HG 3016**  
**(CHEMISTRY 3)**

| Months    | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                    | Week                                   | Days | Class Test/<br>Assignment |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------------------|
| August    | <b>Chemical Energetics:</b><br>1. Review of thermodynamics and the Laws of Thermodynamics.<br>2. Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 8    | Nil                       |
|           | Practical:<br>1) Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                      | 1 <sup>st</sup> -4 <sup>th</sup> week  | 4    | Nil                       |
| September | <b>Chemical Energetics, Ionic equilibria:</b><br>1. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation. Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.<br>2. Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water.    | 1 <sup>st</sup> – 2 <sup>nd</sup> week | 8    | Class test                |
|           | Practical:<br>1) Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                      | 1 <sup>st</sup> -4 <sup>th</sup> week  | 4    |                           |

|          |                                                                                                                                                                                                                                                                                                                                     |                                        |   |            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|------------|
| October  | <b>Ionic equilibria:</b><br>1. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6 |            |
|          | Practical:<br>1) Determination of enthalpy of ionization of acetic acid.                                                                                                                                                                                                                                                            | 1 <sup>st</sup> -4 <sup>th</sup> week  | 4 |            |
| November | Revision/Question-Answer discussion                                                                                                                                                                                                                                                                                                 | 1 <sup>st</sup> -4 <sup>th</sup> week  | 4 | Class test |
| December | End semester examination                                                                                                                                                                                                                                                                                                            |                                        |   |            |

\*\*\*\*\*

**DEPARTMENT OF CHEMISTRY**  
**LESSON PLAN**

Faculty Name: **Barsha Rani Bora**

Course Name: B. Sc. Honours and Regular (CBCS) & Major/Minor (FYUGP)

Session: 2023-2024 (January-June)

**B. Sc. 2nd Semester (FYUGP): Chemistry II**

| Months   | Unit/Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Week                                   | Days | Class Test/<br>Assignment |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------------------|
| January  | <b>Thermodynamics:</b><br>1. Mathematical treatment: Exact and inexact differentials, partial derivatives, Euler's reciprocity, cyclic rules.                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 <sup>th</sup> week                   | 2    | Nil                       |
|          | <b>Practical:</b><br>1. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 <sup>th</sup> week                   | 1    | Nil                       |
| February | <b>Thermodynamics:</b><br>1. Intensive and extensive variables, isolated, closed and open systems. Cyclic, reversible and irreversible processes. Zeroth law of thermodynamics. First law of thermodynamics, concept of heat (q) and work (w), internal energy (U) and enthalpy (H) in differential forms: their molecular interpretation. Calculation of w, q, $\Delta U$ and $\Delta H$ for expansion of ideal gas under isothermal and adiabatic conditions for reversible and irreversible processes.<br>Derivation of Joule-Thomson Coefficient and inversion temperature. | 1 <sup>st</sup> - 4 <sup>th</sup> week | 6    | Class test                |
|          | <b>Practical:</b><br>1. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2    | Nil                       |
| March    | <b>Thermodynamics:</b><br>1. Application of First law of thermodynamics: standard state, standard enthalpy changes of physical and chemical transformations: fusion, sublimation, vaporization, solution, dilution, neutralization, ionization. Bond-dissociation energy Kirchhoff's equation, relation between $\Delta H$ and $\Delta U$ of a reaction. Difference between enthalpy and standard enthalpy.                                                                                                                                                                     | 1 <sup>st</sup> - 4 <sup>th</sup> week | 6    | Assignment                |

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |   |            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|------------|
|       | <b>Practical:</b><br>1. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                                           | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2 | Nil        |
| April | <b>Thermodynamics:</b><br>1. Second law of thermodynamics, entropy (S) as a state function, molecular interpretation of entropy. Residual Entropy. Free energy: Gibbs function (G) and Helmholtz function (A) and their molecular interpretation. Difference between free energy and standard free energy. Gibbs-Helmholtz equation, criteria for thermodynamic equilibrium and spontaneity of a process. Maxwell's Relations and their physical significance. | 1 <sup>st</sup> – 3 <sup>rd</sup> week | 4 | Class test |
|       | Sessional examination                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 <sup>th</sup> week                   |   |            |
| May   | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6 | Class test |
| June  | End semester examination                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |   |            |

**B. Sc. 4th Semester (CBCS): CHE-HC-4036**  
**(Physical Chemistry-IV)**

| Months  | Unit/Topic                                                                                                                                                                                                                           | Week                 | Days | Class Test/Assignment |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-----------------------|
| January | <b>Conductance</b><br>1. Arrhenius theory of electrolytic dissociation. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Molar conductivity at infinite dilution. | 4 <sup>th</sup> week | 2    | Nil                   |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |    |            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|------------|
| February | <b>Conductance</b><br>1. Kohlrausch law of independent migration of ions. Debye Hückel-Onsager equation, Wien effect, Debye-Falkenhagen effect, Walden's rules.<br>2. Ionic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods.                                                                                                                                                                                                                                                                                    | 1 <sup>st</sup> – 4 <sup>th</sup> week | 16 | Class test |
|          | Practical:<br>1. Perform the following conductometric titrations:<br>i. Strong acid vs. strong base<br>ii. Weak acid vs. strong base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2  |            |
| March    | <b>Conductance:</b><br>1. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) conductometric titrations, and (v) hydrolysis constants of salts.                                                                                                                                                                                                                                                                                                                                                                    | 1 <sup>st</sup> week                   | 4  | Assignment |
|          | <b>Electrochemistry:</b><br>1. Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials.<br>2. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining (i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass and SbO/Sb <sub>2</sub> O <sub>3</sub> electrodes. | 2 <sup>nd</sup> -4 <sup>th</sup> week  | 12 |            |
|          | Practical:<br>1. Perform the following conductometric titrations:<br>i. Strong acid vs. strong base<br>ii. Weak acid vs. strong base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |    |            |

|       |                                                                                                                                                                                                                                                                                                                                                                            |                                       |    |            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|------------|
| April | Electrochemistry<br>1. Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers. Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation). Applications of electrolysis in metallurgy and industry.                                                      | 1 <sup>st</sup> -4 <sup>th</sup> week | 14 |            |
|       | Practical:<br>1) Perform the following conductometric titrations:<br>i. Strong acid vs. strong base<br>ii. Weak acid vs. strong base                                                                                                                                                                                                                                       | 1 <sup>st</sup> -3 <sup>rd</sup> week | 2  |            |
|       | Sessional Examination                                                                                                                                                                                                                                                                                                                                                      | 4 <sup>th</sup> week                  |    |            |
| May   | <b>Electrical &amp; Magnetic Properties of Atoms and Molecules:</b><br>1. Basic ideas of electrostatics, Electrostatics of dielectric media, Clausius-Mosotti equation, Lorenz-Laurentz equation, Dipole moment and molecular polarizabilities and their measurements. Diamagnetism, paramagnetism, magnetic susceptibility and its measurement, molecular interpretation. | 1 <sup>st</sup> -4 <sup>th</sup> week | 12 | Class test |
| June  | End semester examination                                                                                                                                                                                                                                                                                                                                                   |                                       |    |            |

**B. Sc. 4th Semester (CBCS): CHE-RC/HG 4016**  
**(CHEMISTRY 4)**

| Months   | Unit/Topic                                                                                                                                                                                                  | Week                                   | Days | Class Test/Assignment |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-----------------------|
| January  | <b>Conductance</b><br>1. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes.                                                                | 4 <sup>th</sup> week                   | 2    | Nil                   |
| February | <b>Conductance</b><br>1. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of | 1 <sup>st</sup> – 4 <sup>th</sup> week | 6    | Nil                   |

|       |                                                                                                                                                                                                                                                                                                                                                                             |                                        |   |            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|------------|
|       | conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, 16 ionic product of water, hydrolysis constant of a salt. Conductometric titrations                                                                                                                                     |                                        |   |            |
|       | Practical:<br>1. Perform the following conductometric titrations:<br>a. Strong acid vs. strong base<br>b. Weak acid vs. strong base                                                                                                                                                                                                                                         | 1 <sup>st</sup> -4 <sup>th</sup> week  | 2 |            |
| March | <b>Electrochemistry</b><br>1. Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: $\Delta G$ , $\Delta H$ and $\Delta S$ from EMF data. | 1 <sup>st</sup> – 4 <sup>th</sup> week | 4 | Assignment |
|       | Practical:<br>1) Perform the following conductometric titrations:<br>a. Strong acid vs. strong base<br>b. Weak acid vs. strong base                                                                                                                                                                                                                                         | 1 <sup>st</sup> - 4 <sup>th</sup> week | 2 |            |
| April | <b>Electrochemistry</b><br>1. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode and quinhydrone electrode.                                                                                                            | 1 <sup>st</sup> -3 <sup>rd</sup> week  | 4 | Class test |
|       | Sessional Examination                                                                                                                                                                                                                                                                                                                                                       | 4 <sup>th</sup> week                   |   |            |
| May   | <b>Electrochemistry</b><br>1. Potentiometric titrations - qualitative treatment (acid-base and oxidation-reduction only).                                                                                                                                                                                                                                                   | 1 <sup>st</sup> -3 <sup>rd</sup> week  | 3 |            |
|       | <b>Revision</b>                                                                                                                                                                                                                                                                                                                                                             | 4 <sup>th</sup> week                   | 1 |            |
|       | Practical:                                                                                                                                                                                                                                                                                                                                                                  | 1 <sup>st</sup> -2 <sup>nd</sup> week  | 2 |            |

|      |                                                                                                                       |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | 1) Perform the following conductometric titrations:<br>a. Strong acid vs. strong base<br>b. Weak acid vs. strong base |  |  |  |
| June | End semester examination                                                                                              |  |  |  |

\*\*\*\*\*